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Ferromagnetism in the
Single-Band Hubbard Model:
An Exact High-Temperature
Expansion

Michael Plischke’
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The first ten terms of the high-temperature expansion of the susceptibility
of the single-band Hubbard model in the strong correlation limit are
obtained for arbitrary electron density. The series is analyzed by ratio
methods and Padé approximants. A critical temperature is found for
0.2 < p < 0.8; for p > 1 further terms in the series are required.
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1. INTRODUCTION

The single-band Hubbard model” has been the subject of many theories and
speculations both in the context of metal-insulator phase transitions and of
the magnetism found in the 34 transition metals. Few exact results exist.
Lieb and Wu® found the ground-state energy exactly in one dimension for
one electron per atom and Shiba® has extended their solution to arbitrary
electron concentration and has also calculated the zero-temperature suscepti-
bility. In three dimensions the only exact result is Nagaoka’s® proof that in
the strong correlation limit for n = N — 1 the ground state is ferromagnetic
in the simple cubic and body-centered cubic lattices and nonferromagnetic
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in the face-centered cubic and hexagonal close-packed lattices. He also
showed that for » = N + 1 all four lattices have a ferromagnetic ground
state. Here N is the number of lattice sites, # the number of electrons.

The question remains whether for macroscopic deviations from the half-
filled lattice magnetic ordering can occur. Some authors®™ have conjectured
that ferromagnetism can only exist in the presence of orbital degeneracy.
Several approximate theories,®®2 on the other hand, do predict ferro-
magnetism in the single-band model at least for some range of electron
density. Recently Fukuyama and Ehrenreich®® have shown that in the
coherent potential approximation the susceptibility at 7 = 0 is nonsingular
for any electron density. We remark that this question of the existence of
ferromagnetism in the absence of Hund’s rule coupling is of more than
academic interest. Kanamori,® for example, argues that a model of non-
interacting d bands is appropriate for nickel.?

In this paper we apply the method of exact high-temperature expansions
to the single-band Hubbard model on the fcc lattice in the limit U — co and
present evidence that for 0.2 < p < 0.8 the susceptibility diverges at a non-
zero critical temperature. High-temperature expansions have been carried
out in one dimension for this model by Beni ez al.'® These authors also
obtained the first two significant terms for the simple cubic lattice. In Section
2 the high-temperature expansions for the quantities of interest are de-
veloped. The analysis of the series is presented in Section 3. Section 4 contains
a discussion of this work.

2. THEORY OF THE HIGH-TEMPERATURE EXPANSION

The method we use to derive the expansion is a modification of the
method of Betts er ql.2®-* for the high-temperature expansion of the XY
model partition function and we shall closely follow their notation and

terminology.
The Hubbard model has the Hamiltonian
Ho= —% > tifche, + o) + U D mgny = h 3 m 6]
i,7,0 i i

where 1,; = ¢t > 0 for i, j nearest-neighbor lattice sites and zero otherwise.
The ¢ and ¢' are electron annihilation and creation operators, #;,, = ¢/;Ci0,
m; = myy — n;,, and we specify that the number of electrons 2, n;, =
n < N, where N is the number of sites in the lattice. In the strong correlation
limit U/kT - o we need only consider the subspace of at most singly

2 See Ref. 10 for a critical review of various approximate techniques.
3 Also see Ref. 12 for a discussion of Hund’s rule in nickel.
¢ Also see Ref. 15 for a review of series expansion results on the XY model.
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occupied sites and henceforth neglect the interaction term. We note that in
this limit the Hubbard model is similar to the XY model; instead of a hard-
core Bose lattice gas we have a hard-core Fermi lattice gas. For this reason
the method of Betts er al.*® is an appropriate starting point. Since the XY
model considered by these authors represents a half-filled lattice—a some-
what simpler situation than a lattice at arbitrary density—a generalization of
the procedure is necessary.
The grand partition function of the system is given by

EvB z, h) = D z*tre %o )
n=0 {n}
where £, is the Hamiltonian (1) without the interaction term and try,
indicates a trace over all # particle states with double occupancy of any site
excluded. In the limits |85 < 1, N — o0,

lim (1/N) log 2,8, h) = log(1 + 22) + lim (1/N) 3" (~BY<#D)!

3

where

ATy = (1 + 22)~ NZZ tr A 4
n=1 {n}
From the partition function (3) all thermodynamic functions may be obtained.
In particular the density p is given by

p = lim (1/N)z(2/ez) log & (5)

Instead of evaluating the partition function series in a finite magnetic field
and differentiating, we obtain the zero-field susceptibility y(8, z) per atom
from a separate series,

16,9 = (e + i 2N 3 5 S cotipmum; | ©
i>7

To eliminate the fugacity z from Eq. (6), we use relatlon (5) and series (3) to

obtain a high-temperature series for z(8, p) which is substituted into (6), thus

yielding a series x(8, p). Our task is therefore to evaluate (> and

H'mm,y.

The general term in 4’ is of the form [ #,¢l,,¢;s,. Each factor #;c}, ¢,
is graphically represented by an arrow from site j to site 7 labeled with the
spin direction ;. The trace of the product depends on the order of the
operators, which is specified by an associated “time” variable, earliest time
indicating that an operator is furthest to the right. To obtain the net con-
tribution of a shadow graph,*® i.e., the same set of arrows with their time
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ordering neglected, we must sum over all time orderings consistent with the
constraints (a) arrow heads and tails must alternate at every site, (b) a spin
o tail may not follow a —o head, (c) equal numbers of heads and tails of
both spin types must exist at each vertex.

The shadow graphs appearing in this calculation are, except for spin
labelings, the same as those appearing in the calculation of the partition
function of the XY model. In performing the average (4) for a given time
ordering, one associates with each site / appearing in the product a factor
p = z(1 + 2z)~'if an annihilation operator ¢;;, ¢;; appears to the right of
the first creation operator ¢l;, c¢f,, and a factor 1 — 2p = (1 + 2z)" ' if a
creation operator appears first. The sum over time orderings constitutes the
vertical weight®® V(g, {o}) of the labeled shadow graph g, the notation
indicating that the vertical weight depends on the spin labeling. We define
the spin weight W (g, {o}) as the number of equivalent spin labelings of the
graph g and the horizontal weight H(g) as the number of equivalent re-
numberings of the vertices of the unlabeled shadow graph g.“% The corre-
sponding bare graph g’ is obtained by replacing all connections between
sites 7, j by a single line and its lattice constant A4(g’, L) is defined as the
number of weak embeddings“® of the graph g’ in the lattice L. In terms of
these quantities the partition function series is written

lim —1og_ = log(l + 22) + Z( ZM(g L)zH(g)
x > W(g, o)V (g, 0) Q)

where K = Bt. The susceptibility is calculated in the same way. The operators
m; and m; are traceless and contribute only if they arise in combinations with
other operators referring to site i. They act as decorations of the partition
function graphs and change the vertical weight calculation only by the added
constraint that a tail must occur at a decorated site before a head. In the
evaluation of the trace, a factor +1 is associated with a decorated site
depending on whether an up or down spin arrow occurs first.
We obtain series of the form

(1/N)log (B, z, h = 0) = log(1 + 2z) + p(1 — 2p) > K’ z app'

jz2

(8)
kTx(8,2) = p + p*(1 = 2p) 2 K’ 2 bpt ©)

The numbers a;, b;; are displayed in Table I up to j = 6 for a;;, and toj = 9
for b,.



163

'O pue uBWULIg AQ PUIIO] 9SOY) SB SJUIWIOW JWeSs 9Y] P[oIA Sa0p
‘oon3e o1qno orduuis 9y} 01 pardepe ‘ernpesoad InQ "g < ] 10J 01 99J Y] 10] (,, JO[ONOS AQ paje[nqe) 9soy} PUEL SIUSWIOW INO UM
‘9AJ0Sa 0} O[qR US3Q 10U 3ABY oM OIym ‘%7 01 dn jo sourdalosip PUNOJ dARY SM “r-,.2 W 3217 7 = 'y uondirosaid o) £q T 9[qEL
WoJ} Paure}qo 9q ued pueq pI[[U-Jley 9SIMIdY30 ue ul d[oy oj8uis e 10§ . _[(1—) ¢ — ] JO uoisuedxo JUSWOW Y} JO 'py SIUSIOLYIS0D YT, »

le-Band Hubbard Model

ing

in the Si

ism in

Ferromagnet

€8PLL8ILY  S9TSLTYS6~ 6°STVLSI'9L  §TLECTTBG0E— 88°9S1°9.5°9 ¥'L68°09L — 690€°98L°T9 5q
- PO PET699°E — 6P LI168S9  €6'EEETES Y — TL'L99'S6P T ¥99°L96°65T — LTPIEPL'ST 8q
- — ¥'978°9LE P'861°TYS — 7'865°06T F69S°5L - 7°€09°6 q
- - - (AX WA 9°99°G¢ $599°91 — 9'680°¢ 19
- - — - 8zE'E 8r0°€ — 98 q
- — - - - 0T — 9L1 *q
N J— — JR— _ — 7€ EQ
- - LY9TE 8ETLE— 9'L06'V1 9'S0v‘c— fL11 '
- - - 7691 — 001°C 0cL— L v
- - — - 98y 9LT— 9% v
— — — — - 91— 91 ep
J— J— — J— J— J— NH 4]
9=1 s=1 b=1 £€=1 T=1 =1 0=1

ol

sjqeL



164 Michael Plischke

We evaluated the partition function series only to sixth order since we
intend to use it only to eliminate the fugacity z in terms of the density p.
This is achieved by using the relation (5), the series (8), and the ansatz
p = p/2 + 225 A(p)K'. We then obtain a high-temperature expansion of y
of the form

kTx = p + p%(1 = p) 2 B(p)K’ (10)
j=3
in which each term is exact in the density variable p. The analysis of this
series is discussed in the next section.

3. ANALYSIS OF THE SUSCEPTIBILITY SERIES

We analyzed the series (10) by ratio and Padé approximant methods.®
While Padé approximants to x'/?, for various values of y, were fairly well
converged, the ratios B, . /B, of successive terms in the series showed marked
irregularities. Examination of the poles of Padé approximants to
(d/dK)log x(K, p) showed the consistent appearance of a pair of poles almost
on the imaginary axis at a comparable distance from the origin as the
physical singularity. We tried transformations of the form

K = «KJ(1 — BK?) (11)

which have the effect of stretching the imaginary axis and contracting the
real axis. Transformations of this type have been successfully applied to the
two-dimensional XY model by Betts e al.*® We found that the transforma-
tion (11) for « = 0.75 and 8 = 0.65 had a smoothing effect on the series.
In Fig. 1 the ratio B,/B, _, of the transformed series is plotted against 1/n for
several densities. Extrapolating to 1/n = 0 yields an estimate of the critical
temperature K; *. It can be seen that for p = 0.4, 0.55, 0.65 (curves B, C, D)
the ratios seem to have settled down and may readily be extrapolated to
I/n = 0. Curve A (p = 0.25) is noisier but we still expect a finite intercept.
In all cases the results of series extrapolation are consistent with Padé
analysis of both the transformed and untransformed series.

Table II lists real poles of Padé approximants to x(K, p) for p = 0.5.
An entry “¢” indicates that only complex poles exist. In our opinion the
entries are converged well enough to indicate the existence of a critical point
but not well enough to allow better than two figure determination of its
location K. As Hunter and Baker®® have pointed out, functions for which
ratio methods are more accurate than Padé approximants for a given number
of terms in the expansion can easily be constructed. We believe y to be such a
function.

5 See Ref. 18 for a review of methods of series analysis.



Ferromagnetism in the Single-Band Hubbard Model

35

T 1 U 1 7T

>AT N>

A=

wii— -

ou—

Fig. 1. Plot of ratios of terms in the transformed susceptibility
series B,/B, _, as function of 1/n. (A) p = 0.25, (B) p = 0.4, (O)
p = 0.55, (D) p = 0.65. The dashed lines show extrapolation to
1/n = 0.
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For densities p < 0.2 and p > 0.75 the series is very noisy and it is
difficult to extract information. We conjecture that the critical densities
below and above which ferromagnetism does not exist are in the vicinity or
p = 0.15 and p = 0.8. This result is consistent with the exact proof of
Nagaoka® that for » = N — 1 the ferromagnetic state is not the ground

state.

Figure 2 shows a plot of KT/t as function of p as determined by the ratio
method. In all cases Padé approximants to x(K, p) yield a figure within 5%,
of the point plotted in the figure.

Table i
N[D 0 1 2 3 4 5 6 7 8
1 0.383 0.432 0433 0430 0427
2 0.402 c 0.433 0432 0425
3 0.369 0.492 0445 0429 0.427
4 0.366 c 0.443  0.411 0.427
5 0603 0414 0424 0428  0.427
6 0.544 0422 0430 0.427
7 0510 0426  0.427
8 0489 0427
9 0475
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Fig. 2. Plot of the critical temperature k7./t as function of the
density p. The dashed lines represent a crude estimate in a region
in which the series is quite noisy.

We have also attempted to determine the critical exponent y of the
susceptibility. Padé approximants to (d/dK) log x(K, p) tielded y ~ 1 with
very poor convergence. Plots of the location of real poles of Padé approxi-
mants to (1/K2)(d/dK)x(K)'"** and to x** had the highest density of inter-
sections for y ~ 2/3, again with poor convergence. As in the determination
of the critical point, we favor the ratio method for determination of y. The
slope of ratio plots B,/B,_, as function of 1/n yields a value y ~ 1.5 for p
close to 0.5. This value of y is the one closest to results on other magnetic
models, but more terms in the series will be required before one can have any
confidence in the result.

Finally we note that the series for p > 1 can be generated from our series
on this lattice by letting # — —¢. The density p then corresponds to density of
holes, 1.e., 2 — p electrons per atom. Nagaoka™® has shown that forn = N +
1 the ground state is ferromagnetic and we have attempted to analyze our
series in this region. While for p < 1 the terms B,{p) are generally all positive,
they alternate in sign for p > 1. Morevoer, the first nontrivial coefficient B,
is negative. Since we expect a positive divergence of y at the Curie point, this
negative term effectively shortens the series. Neither ratio methods nor Padé
approximants to both the original series and series obtained by various
transformations yielded a critical point. We conjecture that on this lattice
the critical temperature for n > N, if finite, is substantially lower than for
n < N.
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4. DISCUSSION

We believe that we have presented strong evidence for the existence of
ferromagnetism in the Hubbard model even in the absence of Hund’s rule
coupling and orbital degeneracy. As noted earlier, this model may be appro-
priate for nickel. While different estimates of the critical temperature are
consistent, it seems that more terms in the series are required for a determina-
tion of the critical exponent y.
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